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w Chapter 3 Plasticity And Creep

MARC contains an extensive material library. A discussion on the use of these capabilities is
found in Volume A. In this chapter, material nonlinearity often exhibited in metals will be
demonstrated. Material nonlinearity associated with rubber or polymer materials may be found in
Chapter 7. The capabilities demonstrated here may be summarized as:

Variable load paths

* Proportional loads
 Nonproportional loads

Choice of yield functions

* von Mises

* Drucker-Prager, Mohr-Coulomb
* Gurson

* Shima

Strain magnitude

* Infinitesimal plasticity
* Finite strain plasticity

Strain hardening

* Limit Analysis
* Isotropic hardening
* Kinematic hardening

Rate effects

* Deviatoric creep
* Volumetric swelling
* ORNL

Compiled in this chapter are a number of solved problems. Table E 3.0-1 summarizes the element
type and options used in these demonstration problems.
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E 3.1 Combined Tension And Torsion Of A Thin-Walled Cylinder

A thin-walled cylinder of 1-in. radius and 10-in. length is extended 1% of its original length
(A= ¢/¢,=1.01) and then twisted so that the twist per unit original length (y = 6/¢,) is 0.02.
The material is elastic-plastic with isotropic hardening. This is the default option of the MARC
program. This example demonstrates the ability of the MARC program to analyze small strain
elastic-plastic problems.

Element (Ref. B4.1)

Element type 4, a curved quadrilateral thin shell, is used. This is a very accurate element for
analyzing regular curved shells. Elements 22, 72, or 75 are easier to use.

Model

The cylinder is divided into four elements with ten nodes. As 8' and 6> must be continuous, the
cylinder is modeled with a joint at angular coordinates (8) O and 360 degrees. This joint is
closed with use of TYING. The geometry and finite element mesh are shown in Figure E 3.1-
1. The nodal point input is 8, Z, and R. Since R is constant, it needs to be given only for the first
nodal point. Type 4 of the FXORD option is then used to generate the complete coordinate set
required by the elements in the program. One end of the cylinder is assumed fixed; the other
end is under the combined action of tension and torsion.

Geometry
The cylinder thickness is 0.01 in. and is assigned in EGEOMI of this option.

Shell Transformation

This option allows transformation of the even-numbered nodes from the global to a local
direction. It facilitates the application of tension and torsion loading at the Z = 10 end in the
POINT LOAD option. In particular, the degrees of freedom are transformed such that they are in
the plane of the shell or normal to it at each node.

Tying

Three types of tying constraints are imposed in this example. The tying type 2 ties the second
degree of freedom between node 2 and nodes 4, 6 and 8 for tensile load. The tying type 6 ties
the sixth degree of freedom between node 2 and nodes 4, 6 and 8 for torsion load. The tying
type 100 ties all degrees of freedom between node 1 and node 9, and between node 2 and node
10, joining together the shell boundaries at angular coordinates (8) 0 and 360 degrees.

Rev. K.5 E3.1 -1
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Boundary Conditions

The cylinder is fixed against rotation and displacement at the Z = 0 end. Four sets of boundary
conditions are necessary. Movement in the 6, direction is continuously zero

u _ov _ =0). Al tt t to the shell surface i aw—()f
(a—ez—a—ez—w- ). Also, movement tangent to the shell surface is zero (8_91— ) for

9

nodes 1, 3, 5 and 7, 891

= 0 for nodes 1 and 5).

Material Properties

Values for Young’s modulus, Poisson’s ratio, and initial yield stress used here are 10.0 x 106
psi, 0.3 and 20,000 psi, respectively.

Work Hard

The single work-hardening slope of 20.0 x 103 psi starts at zero plastic strain.

Loading

Axial tension is first applied to the second degree of freedom of node 2 in nine steps. At this
increment, the maximum stress is 32,790 psi and the total plastic strain is 63.85 x 10*. The load
is scaled to reach the yield surface in the first step. Subsequently, a torsion is applied to the sixth
degree of freedom of node 2 in eight steps. The final maximum Mises’ stress intensity is 51,300
psi with a plastic strain of 0.0168.

Results

The results show the cylinder is stretched axially to an extension of (A) 1.00967 and the axial
tension is 2044.4 1b. in nine steps. The cylinder is then twisted to ratio (y) 0.0204 and the
torsion is 1049.6 in-1b. in eight steps. The plastic strains are only 1.5% and the final stress is
much less than the work-hardening modulus; therefore, small strain theory is acceptable for
this analysis. The PRINT CHOICE option is used to limit the printout to shell layers 2, 5, and 8.

Summary of Options Used

Listed below are the options used in example e3x1.dat:

Parameter Options

ELEMENT
END

SCALE
SHELL SECT
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE

E3.1 -2 Rev. K.5



END OPTION

FIXED DISP

FXORD

GEOMETRY

ISOTROPIC

POINT LOAD

PRINT CHOICE

SHELL TRANFORMATIONS
TYING

WORK HARD

Load Incrementation Options

Rev. K.5

AUTO LOAD

CONTINUE

POINT LOAD
PROPORTIONAL INCREMENT
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[N F-3
—— 10 inches ~—[

t=.01inch

Figure E 3.1-1 Thin Walled Cylinder and Mesh
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E 3.2 Combined Tension And Torsion Of A Thick-walled Cylinder

A thick-walled cylinder of 1-in. length, 2-in. outer radius, and 1-in. inner radius is extended 1%
of its original length (A = ¢/¢,=1.01) and then twisted so that the twist per unit original length

(y = 0/¢,) is 1%. The material is elastic-plastic with kinematic hardening. This example

demonstrates the ability of the program to analyze small strain elastic-plastic problems with
kinematic hardening and change of loading conditions. The RESTART option is also
demonstrated.

Element (Ref. B67.1)

Element type 67, an axisymmetric 8-node distorted quadrilateral including a twist mode of
deformation, is used.

Model

The cylinder has been divided into five elements through the thickness with a total of 28 nodes.
The mesh is shown in Figure E 3.2-1.

Geometry

This option is not required for this element.

Tying

The displacements in Z and 6 direction at the free (Z = 1) end are made the same by tying the
first and third degrees of freedom of all nodes at this end to node 3. TYING types 1 and 3 are
used for this purpose. This simulates a generalized plane-strain condition.

Boundary Conditions

The cylinder is fixed against rotation (8) and displacement (Z) at the built-in end (Z = 0).

Material Properties
Values for Young’s modulus, Poisson’s ratio, and yield stress used here are 10.0 x 10° psi, 0.3
and 20,000 psi, respectively.

Work Hard

The work-hardening curve is specified with two primary work-hardening slopes and
breakpoints. The first work-hardening slope is 2.0 x 108 psi. The second work-hardening slope
of 0.5 x 106 psi starts at a plastic strain of 1.0 x 10-2. This is depicted in Figure E 3.2-2.

Loading

An end load is applied axially to the cylinder through the first degree of freedom of node 3 in
nine steps. Subsequently, an eight-step torsion load is applied in the third degree of freedom of
node 3.

Rev. K.5 E32 -1
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Restart

The analysis has been made in two runs using the RESTART option. The increment 0 loading is
scaled to initiate yielding in the most highly stressed element. In the first run, the elastic-plastic
solution due to tension is obtained in increments O through 8. The plastic strain is 30.64% at
increment 8. Restart data is written to file 8 and is saved. The restart file is used for the second
run, which starts at increment 8. In this run, torsion is applied in increments 9 through 17. The
total plastic strain at increment 17 is 1.28%. The equivalent stress is 39,000 psi in this

increment.

Results

The results show the cylinder is stretched axially to a strain of 0.68%, creating an axial load of
309,129 1b. The cylinder is then twisted by an angular ratio (y) of 0.00779. The resultant
twisting moment is 180,000 in.-lb. The displacement history is shown in Figure E 3.2-3.

Summary of Options Used

Listed below are the options used in example e3x2a.dat:

Parameter Options

ELEMENT
END
SCALE
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
END OPTION
FIXED DISP
ISOTROPIC
POINT LOAD
PRINT CHOICE
RESTART
WORK HARD

Load Incrementation Options

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT

Listed below are the options used in example e3x2b.dat:

Parameter Options

ELEMENT
END
SCALE
SIZING
TITLE

E32 -2
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Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
END OPTION
FIXED DISP
ISOTROPIC
POINT LOAD
PRINT CHOICE
RESTART
WORK HARD

Lcad Incrementation Options

AUTO LOAD

CONTINUE

POINT LOAD
PROPORTIONAL INCREMENT
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Figure E 3.2-1 Thick Walled Cylinder and Mesh
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ex10”

Figure E 3.2-2 Stress-Strain Curve

prob e3.2a non-linear analysis - elmtt 67 Node 2 xMARc
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Figure E 3.2-3 Displacement History at Inner Radius
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E 3.3 Limit Load Analysis

The compression of a layer between two rigid plates is studied in this problem and compared
to theoretical results.

Elements (Ref. B11.1, B115.1)

The solution is obtained using first order isoparametric quadrilateral elements for plane strain,
element types 11 and 115, respectively. Type 115 is similar to type 11; however, it uses reduced
integration with hourglass control.

Model

The plate dimensions are 4 inches wide by 40 inches high, where (-h<x<h)and (-1<y<1),
h =2 and 1 = 20. Due to symmetry, only one-quarter of the layer is modeled, namely (0 <x <
hand 0 <y <1). Figure E 3.3-1 shows the mesh that is used for both element types.

Geometry

The strip has a thickness of 1 inch given in the first field (EGEOMI1). To obtain the constant
volumetric strain formulation, (EGEOM2) is set to unity. This is applied to all elements of type
11. This has no effect for element type 115, because the element does not lock.

Material Properties
The material for all elements is treated as an elastic perfectly-plastic material, with Young’s
modulus of 10.0 E+06 psi, Poisson’s ratio (v) of 0.3, and a yield strength of 20,000 psi.

Boundary Conditions

The symmetry conditions require that all nodes along the x = 0 axis have their horizontal
displacements constrained to zero, and all nodes along the y = O axis have their vertical
displacements constrained to zero.

Load History

The x-displacement enforced across the x = h surface during increment 0 is -0.003, and the
y-displacement is enforced to be zero. Ten load steps with a PROPORTIONAL INCREMENT of
0.5 follow. Another sequence of ten load steps with a proportionality factor of 3 is added, for a
total of 20 increments resulting in a total displacement of -0.063.

Results

The analytical slip-line solution was found by Prandtl for a rigid-plastic material and published
in Foundations of the Theory of Plasticity, Kachanov, North Holland Publishing, Amsterdam,
1971. The stresses in a plate are expressed as follows:

- Oxx (X7Y) =p+ k [ y/h -2 (1 - X2/h2)1/2]
-0y (x,y)=p+ky/h
- Oxy (x,y) =k x/h

Rev. K.5 E33 -1



Volume E: Demonstration Problems

and the limit load is found as:
P=-kl(Vh + m)

Where p is the surrounding pressure, and the yield condition is:
k? = 1/4 (0,4 - Oyy)* + Gy

The relationship between k and the von Mises yield strength, Y, for plane strain conditions
becomes:

3k?=Y2

Contour plots for the of stress are shown in Figure E 3.3-2 and Figure E 3.3-3. Comparing the
predictions of maximum shear to the analytical values shows:

Component Analytical Type 11 Type 115
- Oyy = 11,541 psi 11,770 psi 11,540 psi

A user-written subroutine, IMPD, was written to sum the reactions at the nodes where the
displacements are prescribed to determine the load-deflection curve shown in Figure E 3.3-4.
The curve clearly shows that a limit load has been reached. The last several increments show
no increase in loading, indicating a steady state plastic flow condition. Comparison of the limit
load becomes:

1,512,000 Ibf (Slip-line solution)
-P = 1,665,000 Ibf (Element type 11)
1,754,000 1bf (Element type 115)

The value of the limit load predicted by element type 11 is closer to theoretical than element
type 115.

Computationally, it is interesting to note that during the analysis the singularity ratio was
reduced by a factor of five.

Summary of Options Used
Listed below are the options used in example e3x3.dat:

Parameter Options

END
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DEFINE

END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
POST

PRINT CHOICE
UDUMP

E33 -2 Rev. K.5



Listed below is the user subroutine found in u3x3.f

Listed below are the options used in example e3x3b.dat:

Listed below is the user subroutine found in u3x3b.f:

Rev. K.5

Load Incrementation Options

AUTO LOAD
CONTINUE

PROPORTIONAL INCREMENT

IMPD

Parameter Options

ALIAS
ELEMENT
END

FINITE
LARGE DISP
SIZING
TITLE
UPDATE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DEFINE

END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
POST

PRINT CHOICE
UDUMP

Load Incrementation Options

AUTO LOAD
CONTINUE

PROPORTIONAL INCREMENT

IMPD

Volume E: Demonstration Problems
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INC : 60
suB: O
TIME : 0.000e+00
FREQ : 0.000e+00

1.367+03
| 5.324e+01

1.261e+03

-6.516e+03

-7.830e+03
-9.144e+03
-1.046e+04
-1.177e+04
Y
prob €3.3 non-linear analysis - elmt 11
shear stress
Figure E 3.3-2 ©,, Contour Element 11
E33 -5
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INC : 60
suB: 0
TIME : 0.000e+00
FREQ : 0.000e+00

-7.596e+02

-1.838e+03

-7.230e+03

-8.308e+03
-9.386e+03
-1.046e+04
-1.154e+04
Y
prob €3.3 non-linear analysis - eimt 115
shear stress
Figure E 3.3-3 0,y Contour Element 115
Rev. K.5
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Load (x10*6 Ibf)

Figure E 3.3-4
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Displacement (in.) | Element 11 Element 115
0.0 0.0 0.0
3.00E-03 3.96824E-01 3.96262E-01
6.00E-03 7.26945E-01 7.28464E-01
9.00E-03 9.22769E-01 9.25604E-01
1.20E-02 1.09504E+00 | 1.09972E+00
1.50E-02 1.24589E+00 | 1.25424E+00
1.80E-02 1.37297E+00 1.38484E+00
2.10E-02 1.47581E+00 1.49313E+00
2.40E-02 1.55544E+00 1.57812E+00
2.70E-02 1.61131E+00 1.63987E+00
3.00E-02 1.64520E+00 1.68006E+00
3.30E-02 1.65915E+00 1.70095E+00
3.90E-02 1.66661E+00 | 1.72789E+00
4.80E-02 1.66520E+00 | 1.74967E+00
4.98E-02 1.66517E+00 1.75428E+00

Lo S SRV G N A = T Y R e R e S A A N B o I« )
T

0.010

Element 11
Element 115
v Slip-Line Solution

Load-Displacement Curve

0.020

0.030

0.040

Displacement (inches)

E33 -7
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E 3.4 Bending Of Prismatic Beam

A prismatic beam is loaded into the elastic-plastic range by an end moment. Subsequently, the

loading direction is reversed. The material follows the ORNL recommended constitutive

theories. This problem demonstrates nonproportional loading for an elastic-plastic analysis.
Element (Ref. B16.1)

Element type 16, a 2-node curved beam element, is used.

Model

One end of the beam is fixed; the other end is subjected to a moment. There are four elements
and five nodes for a total of 20 degrees of freedom (see Figure E 3.4-1). The length of the beam
is 100 in.

Geometry

The beam height is taken to be 10.0 in. and is specified as EGEOM1. The beam width is 1.0 in.
and is specified as EGEOM2. Seven layers are used for integration through the height of the
beam (SHELL SECT option).

Boundary Conditions

One end of the beam is fixed against displacement (u = v = 0) and rotation (% = 0),
simulating a cantilevered beam.
iMaieriai Properiies

The material is elastic-plastic. The ORNL constitutive theory is used; consequently kinematic
hardening is automatically invoked by the program. The ORNL theory is flagged through the
ISOTROPIC option. Values for Young’s modulus, Poisson’s ratio, first and second yield stresses

used here are 10.0 x 10° psi, 0.3, 20,000 psi, and 22,000 psi, respectively.
Work Hard

The primary work-hardening slope is 3.0 x 10° psi. The initial secondary work-hardening slope
is 10. x 10° psi. The subsequent secondary work-hardening slope of 3.0 x 10° psi starts at a
plastic strain of 1%.

Loading
An end moment is applied in the fourth degree of freedom of node 5 in 13 steps. The moment
is then reversed in direction and is incremented for 25 steps.

Results

The results show that the program is capable of treating problems involving loading paths with
reversal of plastic deformation. The end moment is scaled to reach yield stress in element 4 and
proportionally incremented to 160% of the moment to first yield in 12 steps. All seven layers
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of beam element 1 have developed plastic strain. The maximum effective plastic strain is
around 1%. The end moment is then reversed with a small negative scaling factor (-0.05). Once
elastic response is established, a large step can be taken using a scaling factor of 40. Twenty-
four more steps are used to bring the reversed moment to about the same maximum in the
opposite direction. The reversed maximum effective plastic strain is around 0.35%. The
moment-rotation diagram is shown in Figure E 3.4-2. The residual stress distribution for zero
applied moment after first loading is shown in Figure E 3.4-3. The reverse plastic flow starts at
a moment of -0.1833 x 10° in-Ib. This is 55% of the load to first yield in the original,
undeformed beam. The PRINT CHOICE option is used to restrict the output to layer 2 of element
1 only.

Summary of Options Used

Listed below are the options used in example e3x4.dat:

Parameter Options

ELEMENT
END

SCALE
SHELL SECT
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DEFINE

END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
POINT LOAD
POST

PRINT CHOICE
WORK HARD

Load Incrementation Options

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT
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CMARC
N
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N £ =100 inches

Figure E 3.4-1 Prismatic Beam Model and Mesh
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Moment (inch-pound) x 106

Figure E 3.4-2

E34 -4
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0.4}

0 i

Beam End Rotation (Radian) x 10°1

-0.6

Moment-Rotation Diagram

1.0 2.

3.0
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Figure E 3.4-3 Residual Stress Distribution for Zero Moment
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E 3.5 Hemispherical Shell Under Thermal Expansion

A hemispherical shell under uniform thermal load is analyzed. The temperatures are prescribed
and elastic-plastic stress and strain are computed.
Element (Ref. B15.1)

Element type 15, a 2-node axisymmetric thin shell, is used.

Model

The geometry of the hemisphere and the mesh is shown in Figure E 3.5-1. A 90-degree cross
section is referenced with respect to an R-Z global coordinate system. The shell has been
divided into eight elements with nine nodes.

Geometry
The shell thickness is 2.0 in. and specified as EGEOM1 of this option. Five layers are used for
integration through the shell cross section as prescribed in the SHELL SECT option.

Boundary Conditions

Fixed boundary conditions are specified at node 9 (u=v = %—l—sl = 0) . Symmetry boundary

conditions are specified at node 1 (v = % =0).

Transformation

Nodes 2 through 9 have been transformed to a new local coordinate system. Boundary
conditions at node 9 are input in the transformed system such that at each node the
displacements are given as radial and tangential.

Material Properties

The material is assumed to be elastic-plastic with strain hardening. The elastic properties are
considered to be independent of temperature. The yield stress decreases with temperature to a
value of zero at 2000°F. Values for Young’s modulus, Poisson’s ratio, coefficient of thermal

expansion, initial temperature, and yield stress used here are 10.0 x 10° psi, 0.3, 1.0 x 106 in/
in/°F, 70°F, and 20,000 psi, respectively.
UFXORD

User subroutine UFXORD is used to generate a full set of five coordinates required for element
type 15.

Work Hard

The user subroutine WKSLP is used to generate the current yield stress and the corresponding
work-hardening slope. The work-hardening curve is shown in Figure E 3.5-2.

Rev. K.5 E35 -1
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Loading

A uniform temperature of 800°F is applied to all elements. The temperature is then
proportionally incremented 100°F for 11 steps.

Temperature Effects

The initial yield stress decreases 10 psi for each increase in temperature of 1°F above 70°F.

Results

Temperature is increased to 1970°F by increment 11; plastic strain at layer 1 of integration point
3 of element 8 is 0.29. The total displacement due to thermal expansion for node 1 is 0.224 in.
The resultant displacement is shown in Figure E 3.5-3. The PRINT CHOICE option is used to
restrict printout to layers 1 through 3.

The highest stressed element is element 8, which is at the fixed boundary. This boundary
condition is quite severe and a more accurate solution would have been obtained if mesh
refinement would have been used in this region. Initial yield can be predicted by assuming that
a small region near this boundary is constrained. Then,

G,, = 0,, = EaAT Gy =0
C = 3SS"EAT
G = 3% = B

Y (T) = o atyield, so

(20000 — 10AT = 10.0 x 10® x 1.0x 1075AT)
AT = 1000°F
Hence, yield should occur in increment 2, as it does.

Summary of Options Used

Listed below are the options used in example e3x5.dat:

Parameter Options

ELEMENT
END

NEW

SHELL SECT
SIZING
THERMAL
TITLE

E3.5 -2 Rev. K.5



Model Definition Options

CONNECTIVITY
CONTROL

DEFINE

END OPTION

FIXED DISP
GEOMETRY

INITIAL STATE
ISOTROPIC

PRINT CHOICE
TEMPERATURE EFFECTS
THERMAL LOADS
TRANSFORMATIONS
UFXORD

WORK HARD

Load Incrementation Options

Listed below are the user subroutines found in u3x5.f:

Rev. K.5

AUTO THERM
CHANGE STATE
CONTINUE

WKSLP
UFXORD

Volume E: Demonstration Problems
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AA
CSMARC

R =100 inches !
X

Figure E 3.5-1 Hemispherical Shell and Mesh
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Stress x 104 psi

1 1 |
0 1 2 3 4

[3, 1 ]

Strain x 10’3 inch/inch

Figure E 3.5-2 Work-Hardening Curve
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INC 12 AA
SUB : 0 WMARC
TIME : 0,000e+00
FREQ : 0.000e+00
Y
X

prob e3.5 non-linear analysis - elmt 15

Displacements x
Figure E 3.5-3 Displaced Mesh
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E 3.6 Bending Of A Simply Supported Square Plate,
Subjected To Pressure Load

In this problem, the maximum transverse load that a square plate of anisotropic material can
sustain is determined.

Element (Ref. B50.1)
Library element type 50, a 4-node rectangular flat plate, is used.

Model

Due to symmetry, only one-quarter of the plate is modeled. Figure E 3.6-1 shows the mesh with
16 elements and 25 nodes.

Geometry

The thickness of the plate is specified as 0.5 in. in EGEOMI. Five layers are used for
integration through the plate cross section in the SHELL SECT option.

Boundary Conditions

Simply-supported conditions are specified on the edge planes (x = 0 and y = 0). Other boundary
conditions are specified on the symmetry planes (x =4 and y = 4).

Material Properties

The material is isotropic for elastic deformation and anisotropic for plastic deformation. The
modified yield surface of Hill is used; see Volume D. No work-hardening occurs with plastic
deformation. The values for Young’s modulus, Poisson’s ratio, and yield stress used here are
10.0 x 106 psi, 0.3, and 20,000 psi, respectively. The user subroutine ANPLAS is used to specify
ratios of actual to isotropic yield for direct tension yielding and for yield in shear.

Loading

A uniform pressure of 10.0 psi is applied using the DIST LOAD option. The SCALE parameter
card is used to raise this pressure to a magnitude such that the highest stressed element (element
16) is at first yield. Twenty load increments are applied to obtain an estimate of the limit load.

Results

Only the corner elements of the plate are printed. Figure E 3.6-2 shows the load deflection
results. Notice the nonlinear load-deflection behavior. The limit load can be compared with the
semianalytic solution given in Hodge [1]. After 20 increments, a contour plot of the equivalent
stress on the top surface of the model is shown in Figure E 3.6-3. The lack of symmetry is due
to the anisotropic yield condition.
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For a simply supported plate,

M = 0y0t2/4

f=Pp e A2/6M = 0.96

collapse

0.96 X6 e O'yt2
A%4

0.96 x 6 x 20000 x 25

AXAXxXA4 430

P_. = 450 Semi-analytical

C

Pc = 442 MARC calculated

Reference

Hodge, P. G., Plastic Analysis of Structures (McGraw-Hill, New York, 1959).
Summary of Options Used

Listed below are the options used in example e3x6.dat:

Parameter Options

ELEMENT
END

SCALE
SHELL SECT
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DEFINE

DIST LOADS
END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
PRINT CHOICE
RESTART

Load Incrementation Options

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT

Listed below is the user subroutine found in u3x6.f:

ANPLAS
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AA
$SMARC
o221 822 23 524 g 25
13 14 15 16
16 417 & 18 & 19 & 20
9 10 11 12
411 b 12 413 414 415
5 6 7 8
: b &z 48 &9 & 10
1 2 3 4
Y
L S— g3 -4 4 9
X
Figure E 3.6-1 Mesh Outline
Rev. K.5 E3.6 -3



Volume E: Demonstration Problems

W Transverse Loads x 102 Pounds
N
I

-
I

] ] ]
0 0.5 1.0 1.5

Deflection at the Center x 10'1, Inch

Figure E 3.6-2 Load-Deflection Results
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INC : 20 AMARC
SUB 0 wW

TIME : 0.000e+00

FREQ : 0.000e+00

2.917e+04
2.664e+04
2.411e+04
2.157e+04
1.904e+04
1.651e+04
1.,398e+04
1.145e+04

8.918e+03

prob 3.6 non-linear analysis - elmt 50

Equivalent von Mises Stress Layer 1

Figure E 3.6-3 Equivalent Stress Results
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E 3.7 Elastic-Plastic Analysis Of A Thick Cylinder

In this problem, a thick cylinder under the action of uniform internal pressure is loaded into the
plastic region. A comparison with rigid plastic results is provided.

Element (Ref. B10.1)
The axisymmetric quadrilateral element, library element type 10, is used to model the wall of
the cylinder. Details for this element are found in Volume B 10.1-1.

Model

Figure E 3.7-1 shows the model geometry for this example. The cylinder wall has an inner
radius of 1.0 in. and an outer radius of 2.0 in.

The mesh is shown in Figure E 3.7-2 and results in a model of the wall consisting of 20
elements, 42 nodes and 84 degrees of freedom.
Geometry

The geometry option is not required for this element.

Material Properties

The material data is: Young’s modulus (E) of 30.0 x 10° psi, Poisson’s ratio (v) of 0.3, and Von
Mises yield stress (o,) of 45,000 psi. The material is assumed to behave elastic-perfectly

plastic; i.e., no strain hardening.

Boundary Conditions

Restraint boundary conditions are imposed in the axial direction on all nodes thus allowing
only radial motion of the wall. This solution corresponds to a plane strain case.

Loading

An initial uniform pressure of 19,550 psi is applied using the DIST LOAD option. To investigate
the plastic effects, SCALE is used to raise this pressure to a magnitude such that the highest
stressed element (element 1) in the model has an equivalent yield stress (J2) which is equal to
the specified yield stress of 45,000 psi. The resulting scale factor here is 1.045 which indicates
the applied pressure for increment zero is 20,430 psi.

The data before END OPTION provides the elastic solution such that the highest stressed
element is at first yield of 45,000 psi and any further loading is done incrementally into the
plastic region.

Control

This option specifies a maximum of 15 increments in this example and a tolerance of 15% for
convergence. (Only 11 increments are provided as the input data count for the zero increment.)
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Incremental Loading

The data cards following END OPTION are used to specify the incremental load step into the
plastic region. The AUTO LOAD option is used to apply two load increments of equal size and
the PROPORTIONAL INCREMENT option is used to provide a scaling factor of the load step size
for each application of the AUTO LOAD option.

The PROPORTIONAL INCREMENT option as used here specifies a scaling factor to be applied
to the previous load step size, and the minimum number of cycles through the prediction of
plastic effects (NCYCM) was set to 2 to improve solution accuracy. The scaling factor is
adjusted to give the necessary small load steps to keep the solution within the desired tolerance.

The incremental loads which are applied in this example are as follows:

Increment
0 Py =sp=(1.03)(19550) = 20,136 psi
1 P, =Py + AP;: AP, = fsp = (0.13)(1.03)(19,550)
2 P, =P,+ AP, + AP,: AP, = AP,
3 P; =Py + AP, + AP, + AP;: AP; =0.8AP,
5 Ps =Py,+ AP, + ...+ APs: AP5=0.7AP,
7 P; =Py+ AP, + ... + AP;: AP, =0.667AP,
10 Py =Py + AP, + ... + AP,
AP o= APy = 0.5APg = 0.5AP,; = ... =
= 0.5(0.667)(0.7)(0.8)(0.13)Ap =
=1.04052 x 1072 Ap = 488 psi

If a reverse load is desired, a negative scale factor should be used only once to reverse the sign
of the load step.

If a load step is applied which is too large to allow the energy change tolerance to be satisfied,
the program will, in this case, cycle through the predicted displacement iteration five times. On
the last try, a message indicating NO CONVERGENCE TO TOLERANCE is printed out. Then
the strains and stresses corresponding to the last iteration are printed in the output, and the
program exits with an appropriate exit message.

Restart

To protect against failure to meet tolerances, use of the restart capability available in the
program is recommended. The RESTART option has been used in this example. Two input decks
which follow this discussion illustrate the use of RESTART. The first run creates a restart file
(unit 8) and writes the necessary data to this file so that the analysis may be restarted at any
increment.

The initial deck is set up to run completely through the analysis while the second is used to
restart the problem at a point in the middle of the analysis. The analysis was restarted at
increment 7.
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In general, this specification requires the program to read the next set of load data following
END OPTION to be applied as the increment 8 load set. In this case, the program already has the
required load data for the increment 8 solution because of the use of the AUTO LOAD option,
and it will complete the step of the option before reading the additional data after END OPTION.
The data supplied after END OPTION is only enough to complete increments 9 and 10. In the
third part, the restart tape is read and positioned so that postprocessing plotting can be done.

Results

The results of this analysis are shown in Figure E 3.7-3 through Figure E 3.7-6. Comparison is
made with the results of the finite difference solution given by Prager, W. and Hodge, P. G.,
Jr., Theory of Perfectly Plastic Solids, Chapter 4, John Wiley and Sons, 1963.

Comparison is shown for two values of tolerance which varied from 0.5 to 0.1. The results did
not vary appreciably as a function of the displacement tolerance.

The following terminology is used in Figure E 3.7-4 through Figure E 3.7-6:

a = inner radius

b = outer radius

p = radius of elastic-plastic boundary
o, = radial stress

oy = circumferential stress

o, = axial stress

Y =yield stress
k=Y/3

The elastic-plastic boundary is shown as a function of the pressure, p, in Figure E 3.7-3.

For the plane strain condition, a numerical solution obtained by finite difference methods was
given in the reference. The radial stress distribution for two different positions of the elastic-
plastic boundary (p/a = 1.2 and p/a = 2.0) are compared to the solution given in the reference
in Figure E 3.7-4. Excellent agreement is observed. The circumferential stress distribution in
the partially plastic tube is similarly compared in Figure E 3.7-5. A comparison of the axial
stress distribution is given in Figure E 3.7-6. The two solutions are seen to be in good
agreement.

Summary of Options Used

Listed below are the options used in example e3x7a.dat:

Parameter Options

END
SCALE
SIZING
TITLE
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Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DIST LOADS
END OPTION
FIXED DISP
ISOTROPIC
PRINT CHOICE
RESTART

Load Incrementation Options

Listed below are the options used in example e3x7b.dat:

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT

Parameter Options

END
SCALE
SIZING
TITLE

Model Definition Options

CONTROL
DIST LOADS
END OPTION
FIXED DISP
ISOTROPIC
PRINT CHOICE
RESTART

Load Incrementation Options

Listed below are the options used in example e3x7c.dat:

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT

Parameter Options

E3.7 -4

END

MESH PLOT
SCALE
SIZING
TITLE
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Model Definition Options

BOUNDARY CONDITIONS
CONTROL

DIST LOADS

END OPTION

ISOTROPIC

PRINT CHOICE

RESTART

Load Incrementation Options
CONTINUE
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R
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Figure E 3.7-1 Cylinder Wall
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Figure E 3.7-2 Cylinder Wall Generated Mesh
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o Ref. (Figure 27)
o MARC, Tolerance 0.05
x MARC, Tolerance 0.01
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1.0
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Radius, p/a

Figure E 3.7-3  Pressure Versus Elastic-Plastic Boundary

-0.8 .

— Ref. (Figure 24)
=**Finite Element Solution

A L J

Figure E 3.7-4 Radial Stress Distribution
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Stre;'sq
oe/2k
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0.7
0.6
0.5

0.4 :j/
— Ref. (Figure 26)

0.3 2. Finite Element Solution
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Figure E 3.7-5 Circumferential Stress Distribution
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Figure E 3.7-6  Axial Stress Distribution
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E 3.8 Double-Edge Notch Specimen Under Axial Tension

In this problem, the J-integral is evaluated for an elastic-plastic Double-Edge Notch (D.E.N.)
specimen under axial tension. Three different paths are used for the J-integral evaluation. The
variation in the value of J between the three paths indicates the accuracy of the solution.

Element (Ref. B27.1)

Element type 27, an 8-node plane-strain quadrilateral, is used.

Model

Figure E 3.8-1 shows the geometry and the principal boundary nodes for the seven blocks used
to define the quarter specimen. Figure E 3.8-2 shows the mesh with 32 elements and 107 nodes.
A second COORDINATES block is used to move the side nodes of the crack tip elements to the
one-quarter points (one-quarter of the way along the sides from the crack tip to the opposite
face of the element).

Geometry

The option is not required for this element, as a unit thickness will be considered.

Boundary Conditions

Boundary conditions are used to enforce symmetry about the x- and y-axes.

Material Properties
The material is elastic-plastic with strain hardening. Values for Young’s modulus, Poisson’s
ratio, and yield stress used here are 30 x 10° psi, 0.3 and 50.0 x 10° psi, respectively.

Work Hard

User subroutine WKSLP is used to input the work-hardening slope. The work-hardening curve
is shown in Figure E 3.8-3. The yield surface may be expressed as:

_ _ 0.2
G (eP) = o (1+EeP/o,)

dGc

-0.8
_ + EgP
3 0.2 E(1+EeP/0 )

J-Integral

The J-integral is evaluated numerically by moving nodes within a certain ring of elements
around the crack tip and measuring the change in strain energy. (This node movement
represents a differential crack advance.) This mesh has three obvious “rings” of elements
around the crack tip, so that three evaluations of J are provided. A differential movement of 102
is used in all three evaluations.
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Loading

An initial uniform pressure of 100 psi is applied using the DIST LOAD option. SCALE is used to
raise this pressure to a magnitude such that the highest stressed element (element 20 here) is at
first yield. The pressure is scaled to 3,047 psi. The pressure is then incremented for five steps

until the final pressure is 3,308 psi.

Results

The program provides an output of the strain energy differences. This must be normalized by
the crack opening area to obtain the value of J. Since this specimen is of unit thickness, the
crack opening area is Al, where Al is the differential crack motion. The mesh used symmetry
about the crack line, so that the strain energy change in the actual specimen would be twice that
printed out. These results are summarized in Table E 3.8-1. It is clear that these results do
demonstrate the path independence for the J-integral evaluation. A plot of the equivalent stress
for increment 5 is shown in Figure E 3.8-4. The plastic deformation is local to the crack tip
only, occurring in elements 3, 4, 19, and 20. The PRINT CHOICE option is used to restrict the

printout to those elements in the inner rings surrounding the crack tip.

Summary of Options Used

Listed below are the options used in example e3x8.dat:

Parameter Options

ELEMENT
END
J-INT
SCALE
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DIST LOADS
END OPTION
FIXED DISP
ISOTROPIC
J-INTEGRAL
PRINT CHOICE
RESTART
WORK HARD

Load Incrementation Options

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT

Listed below is the user subroutine found in u3x8.f:

WKSLP

E38 -2
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Table E 3.8-1 J-Integral Evaluation Results

Move Tip Move First Ring | Move Second Ring of
Only of Elements Elements

Strain Energy Change 5 o D

for increment 0 (Au) 6.220 x 10 6.203 x 10 6.199 x 10
2Au

J-Integral (Kl_ ) 12.46 12.424 12.418

Strain Energy Change 2 Y 2

for increment 1 (Au) 6.858 x 10 6.839 x 10 6.834x 10
2Au

J-Integral (—&T 13.738 13.698 13.69

Strain Energy Change 2 0 -

for increment 2 (Au) 7.528 x 10 7.506 x 10 7.501 x 10
2Au

J-Integral ( Al ) 15.078 15.034 15.026

Strain Energy Change Y 5 5

for increment 3 (Au) 8.228 x 10 8.205 x 10 8.199x 10
2Au

J-Integral ( AL ) 16.482 16.434 16.424

Strain Energy Change 5 D) 0y

for increment 4 (Au) 8.960 x 10 8.934 x 10 8.929 x 10
2Au

J-Integral ( Al ) 17.948 17.896 17.886

Strain Energy Change 2 ) 2

for increment 1 (Au) 9.723 x 10 9.695 x 10 9.689 x 10
2Au

J-Integral (—A—l— 19.476 19.422 19.41
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o =100 psi

rtrtrr

60”

<—10”—>|<—10”——>

E = 30 x 10° psi
v=0.3

e

o =100 psi

Figure E 3.8-1 D.E.N. Specimen
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AA
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Figure E 3.8-2 Mesh for D.E.N.
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Figure E 3.8-3 Work-Hardening Slopes
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INC 5
SUB 0
TIME : 0.000e+00
FREQ : 0.000e+00

AA
¢SMARC

1.108e-04
9.342e-05
7.606e-05
5.870e-05

4.134e-05

2.398e-05

6.620e-06

-1.074e-05

-2.810e-05

prob e3.8 non-linear analysis - elmt 27

Equivalent Plastic Strain

Figure E 3.8-4 Equivalent Plastic Strain for Increment 5
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E 3.9 Analysis Of A Soil With A Cavity, Mohr-Coulomb Example

The availability of complex yield functions in the material library of the program allows the
modeling of many problems involving materials with hydrostatic yield dependence, such as
ice, soil and rock. A parabolic hydrostatic stress dependency is available as an alternative to the
more usual linear model, so that the hydrostatic dependence of the yield function may be
closely modeled over a wider range of stress. The dilatancy may be made a function of the
hydrostatic stress using parabolic dependency; therefore, it is felt that this is a more
straightforward approach than adopting a nonassociative flow rule (see: David, E. H., Theories
of Plasticity and the Failure of Soil Masses, in Soil Mechanics, Selected Topics, I. K. Lee, ed.,
American Elsevier Publishing Co., 1968). As an example of the various yield functions, a
simple structure was analyzed under small displacement assumptions and plane strain
conditions.

Element (Ref. B11.1)

The plane-strain quadrilateral, element type 11, was used in this example.

Model
The geometry of the generated mesh used is shown in Figure E 3.9-1. The final model consists
of 80 elements, 99 nodes and 198 degrees of freedom.

Geometry

This option is not required for this element, as a unit thickness will be considered.

Boundary Conditions

A plane strain condition is assumed. The displacement boundary conditions are due to
symmetry on the inner edges (y = 0 and x = 0). The zero displacement at all points on the rigid
circular cutout (x? + y? = 50) is zero, representing a rigid inclusion.

Loading

The edge (y = 300) is loaded with a uniform pressure in an incremental fashion. The initial load
is scaled to a condition of first yield and is proportionally incremented using the automatic load
incrementation option for several steps. No other forms of lead are applied.

Material Properties

The material is assumed to have elastic constants: E = 5.0 x 10° psi and v = 0.2. Several yield
surfaces were assumed:

1. Mises material: ¢ = 140 psi (¢ = 202 psi).
2. Linear Mohr-Coulomb: ¢ = 140 psi, ¢ = 30°.

3. Parabolic Mohr-Coulomb: ¢ = 140 psi, o = _‘j__o
cos30
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4. Parabolic Mohr-Coulomb: C = 140 psi, o = ctan30°.

5. Item (3) is such that the angle of friction at zero mean stress is the same as in the linear
surface (2), while (4) has the same yield as (2) at zero shear. The plane-strain forms
of those surfaces are shown in Figure E 3.9-2. Their generalization into the (J; - J,)
plane is shown in Figure E 3.9-3. For the present analysis only (1), (2) and (4) were
used. The type of constitutive law is set in the ISOTROPIC option.

Results

Global load-displacement behavior is shown in Figure E 3.9-4. Node 35 (at approximately
x = 300) represents motion of the free surface in a negative x-direction.

The Mises idealization shows first yielding at 167 psi pressure, and reaches a limit load at about
230 psi pressure, when all elements are in a state of plastic flow. The parabolic Mohr-Coulomb
idealization yields first at 238 psi pressure. At 315 psi pressure, a sharp change in stiffness is
observed. A limit load is not reached, though the stiffness is relatively low above the load.

The linear Mohr-Coulomb material shows a rather different behavior: after yielding initially at
264 psi pressure, a gradual change in stiffness occurs until, at about 400 psi pressure, all
elements are flowing plastically. Above that load the structure continues to respond with the
same resistance, as the hydrostatic stress build up.

The stress fields at high load levels are shown for the various material idealizations in
Figure E 3.9-5 through Figure E 3.9-10. Figure E 3.9-5, Figure E 3.9-6 and Figure E 3.9-7
show o, for Mises, linear Mohr-Coulomb and parabolic Mohr-Coulomb respectively: the
Mises material is just below limit load, at 220 psi pressure. The linear Mohr-Coulomb is in the
fully plastic state at 475 psi pressure, and the parabolic is close to the fully plastic state at 327
psi pressure. These stress fields are similar for the three materials. In Figure E 3.9-8 and

Figure E 3.9-9, the mean normal stress and deviatoric stress (,/3J,) are shown for the linear

Mohr-Coulomb model in the fully plastic state (p = 475 psi). The linear relation between these
stress measures is apparent. Notice the high compression just above the cutout and on the edge
of the prism. The edge stress is probably due to the symmetry condition and the plain strain
constant. Figure E 3.9-10 shows two stress measures (mean normal and deviatoric,
respectively) for the parabolic Mohr-Coulomb model close to the fully plastic state (at p = 327

psi). Here the (,/3J,) plot shows a more uniform field, since the parabola in the (J; - J,) plane

is considerably reduced in slope compared to the straight line at the hydro-static stress levels
(see Figure E 3.9-3).

Finally, in Figure E 3.9-10, the contours of plastic strain are displayed. Interestingly, the peak
value is somewhat above the cutout, at x =0, y = 100.
Input Deck

The input deck is set up to do only the analysis for the parabolic Mohr-Coulomb case.
Appropriate changes are necessary for the other forms discussed. The contour plots shown
were obtained using Mentat.
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Summary of Options Used

Listed below are the options used in example e3x9.dat:

Parameter Options

ELEMENT
END
SCALE
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DIST LOADS
END OPTION
FIXED DISP
ISOTROPIC
OPTIMIZE

Load Incrementation Options

AUTO LOAD
CONTINUE

PROPORTIONAL INCREMENT

Rev. K.5
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Figure E 3.9-1
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INC 3 AA
SUB : 0 WMARC
TIME ; 0.000e+00
FREQ : 0.000e+00

3.265e+02
2.913e+02
2.561e+02
2.208e+02
1.857e+02
1.505e+02
1.153e+02
8.012e+01

4,493e+01

prob 3.9 - Parabolic Mohc-Coulomb

Equivalent von Mises Stress

Figure E 3.9-5 Equivalent Stress at 307 psi
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INC 3 AMARC
SUB : 0 w

TIME : 0,000e+00

FREQ : 0.000e+00

.397e+01

.796e+00
.756e+01
.833e+01
.910e+01
.29%e+02
.606e+02
.914e+02

.222e+02

prob 3,9 - Parabolic Mohc-Coulomb

Mean Normal Stress

Figure E 3.9-6 Mean Normal Stress at 307 psi
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INC
SUB
TIME
FREQ

3 A

: g marc
0.000e+00
0.000e+00

e 4e se e

2.128e-04

1.858e-04

1.588e-04

1.318e-04

1,048e-04

7.777e-05

5.076e-05

2.375e-05

-3.264e-06

prob 3.9 - Parabolic Mohc-Coulomb

Equivalent Plastic Strain

Figure E 3.9-7 Equivalent Plastic Strain at 307 psi
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INC 9 OMARC
SUB 0 w

TIME : 0.000e+00

FREQ : 0.000e+00

3.265e+02
2.907e+02
2.550e+02
2.193e+02

1.836e+02

1.47%e+02

1.122e+02

7.643e+01

4,071e+01 L - A\

prob 3.9 - Parabolic Mohc-Coulomb

Equivalent von Mises Stress

Figure E 3.9-8 Equivalent von Mises Stress at 475 psi
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INC 3 AA
SUB 0 wMARC

TIME : 0.000e+00
FREQ : 0.000e+00

.969e+01
.056e+01
.082e+01
.107e+01
.013e+02
.316e+02
.618e+02
.921e+02

.223e+02

prob e3.9 - Parabolic Mohc-Coulomb

Mean Normal Stress

Figure E 3.9-9 Mean Normal Stress at 475 psi
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INC : 9 AA
: MARC
SUB : 0 w

TIME : 0.000e+00
FREQ : 0.000e+00

3.284e-04
2.870e-04
2.456e-04
2.042e-04
1.628e-04

1.214e-04

| 7.998e-05

3.857e-05

-2.837e-06

prob e3.9 - Parabolic Mohc-Coulomb

Equivalent Plastic Strain

Figure E 3.9-10 Equivalent Plastic Strain at 475 psi
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E 3.10 Plate With Hole Subjected To A Cyclic Load

A plate with hole under the action of an in-plane force is loaded into an elastic-plastic range.
The load is reversed until it reaches an absolute value which is the same as the initial load. The
material is elastic-plastic with combined isotropic and kinematic hardening.

Element (Ref. B26.1)

Element 26, an 8-node plane-stress quadrilateral, is used.

Model

The mesh, consisting of 20 elements and 79 nodes, is shown in Figure E 3.10-1.

Geometry
The thickness of the plate is specified as 1.0 in. in EGEOMI1.

Boundary Condition

Boundary conditions are used to enforce symmetry about the x- and y-axes.

Material Properties

The material is elastic-plastic with combined isotropic and kinematic hardening. Values for
Young’s modulus, Poisson’s ratio, and yield stress used here are 30 x 109 psi, 0.3, 50 x 103 psi,
respectively.

Work Hard
Five sets of work-hardening slope and breakpoint are used to define the work-hardening curve
as shown in Figure E 3.10-2:
1st work-hardening slope = 14.3 x 106, breakpoint = 0.
2nd work-hardening slope = 3. x 108, breakpoint = 0.7 x 1073
3rd work-hardening slope = 1.9 x 106, breakpoint = 1.6 x 1073
4th work-hardening slope = 0.67 x 10°,  breakpoint = 2.55 x 1073
5th work-hardening slope = 0.3 x 106, breakpoint = 3.3 x 1073

The final slope is used for the kinematic hardening portion of the work-hardening behavior.

Loading

An initial in-plane tension is applied on the top edge of the mesh. SCALE is used to raise this
tension to a magnitude such that the highest stressed element (in this case element 8) is at first
yield. The tension is then incremented to 130% of load to first yield in five steps. The in-plane
load is then reversed in direction and is incremented to the same absolute magnitude in 19

steps.
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Optimization

The Cuthill-McKee algorithm is used to obtain a nodal bandwidth of 26 after ten trials. The
correspondence table is written to unit 1.

Results

The plate with hole reaches yield stress at a tension of 1.62 x 10* Ib. As the tension increases
to 130% of yield load (2.1 x 10*1b) in five increments, yielding advances from integration point

2 to 5 of element 8. The maximum effective plastic strain is around 3.3 x 10, After the in-
plane load is reversed in direction and incremented to the same absolute maximum in 19 steps,

the maximum effective plastic strain is 2.0 x 10™. A contour plot of von Mises stress for
increment 23 is shown in Figure E 3.10-3. The displacements are shown in Figure E 3.10-4.
The PRINT CHOICE option is used to restrict the output to layers 2, 5 and 8 of elements 7 and 8.

Summary of Options Used

Listed below are the options used in example e3x10.dat:

Parameter Options

ELEMENT
END
SCALE
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
DIST LOADS
END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
PRINT CHOICE
WORK HARD

Load Incrementation Options

AUTO LOAD
CONTINUE
PROPORTIONAL INCREMENT
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LMARC
@l R0 59 g58 a17
57
hi8
3
51
i 12
0 19
1 10
49
48
62 . 47 1
1
G 4
7 16
66
Z 76 67 4 th20
73 5 %4 A 2 .
70 g i 5
28 12
3
# 2
AW 5
g a8 12 16 $21 X
Figure E 3.10-1 Mesh Layout for Plate with Hole
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Stress x 10* (psi)

Strain x 10~

Figure E 3.10-2 Work-Hardening Curve

E3.10 - 4 Rev. K.5



Volume E: Demonstration Problems

INC 23 LOMARC
SUB 0 W

TIME : 0.000e+00

FREQ : 0,000e+00

.402e+04
.638e+04
.875e+04
.112e+04
.348e+04
.585e+04
.B22e+04
.058e+04

.949e+03

prob e3.10 - combined hardening

Equivalent von Mises Stress

Figure E 3.10-3 Mises Stress Results
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no: 3 manrc
SUB ¢ 0 wW
TIME 3 0.000e+0i0
FREQ : 0.000e+(10
41

prob 3,10 non-linear analysis

Displacements x
Figure E 3.10-4 Displaced Mesh
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E 3.11 Axisymmetric Bar In Combined Tension And Thermal
Expansion

An axisymmetric bar under combined tension and thermal expansion is loaded into the elastic-
plastic range. The bar is loaded in tension to yield, and the temperature and mechanical load
are subsequently increased.

Element (Ref. B28.1)

Element type 28, an 8-node distorted quadrilateral, is used.

Model
The geometry of the bar and the mesh are shown in Figure E 3.11-1. The bar has been divided
into five elements with 28 nodes.

Geometry

This option is not required for this element.

Tying
The same axial displacements are imposed by TYING the first degree of freedom of all nodes in
the loaded face (Z = 1) to node 3, producing a generalized plane-strain condition.

Boundary Conditions

Fixed boundary conditions in the z-direction are specified at the built-in end (Z = 0).

Material Properties

The material is assumed to be elastic-plastic with isotropic strain hardening. Values for Young’s
modulus, Poisson’s ratio, coefficient of thermal expansion and yield stress used here are

10.0 x 10 psi, 0.3, 1.0 x 1073 in/°F, and 20,000. psi, respectively.
Work Hard

A constant work-hardening slope of 30.0 x 10* psi is used.

Loading

An end load of 10,000 Ib is first applied to the bar in the direction of the first degree of freedom
of node 3 using the POINT LOAD option. The load is scaled to a condition of first yield. The
temperature is then increased by a total of 500 degrees in five steps. The mechanical load is
scaled by a factor of 0.15376.
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Results

The bar reaches yield stress due to tension at a load of 1.57 x 10° Ib. At the maximum
temperature, the plastic strain is about 0.5% and the total load is 1.68 x 10% Ib. The loading is
proportional; therefore, no iteration is required for a convergent solution. The PRINT CHOICE
option is used to restrict the output to shell layers 2, 5 and 8. A restart file was created at every

increment. This may be used to extend the analysis or for postprocessing.

Summary of Options Used

Listed below are the options used in example e3x11.dat:

E3.11 -2

Parameter Options

ELEMENT
END
SCALE
SIZING
THERMAL
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
END OPTION
FIXED DISP
ISOTROPIC
POINT LOAD
PRINT CHOICE
RESTART
WORK HARD

Load Incrementation Options

AUTO THERM

CHANGE STATE

CONTINUE

PROPORTIONAL INCREMENT
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p% el ——a% ¢SMARC

h24 5 125

W g2 %3

g19 4 120
r =5 inches
£=1inch

G186 g1z 418

nld 3 15

IR a12 413

49 2 410

e =X —8

mé 1 05

ol a2 &3

Figure E 3.11-1 Axisymmetric Bar and Mesh

Rev. K.5 E3.11 -3



Volume E: Demonstration Problems

E3.11 -4 Rev. K.5



Volume E: Demonstration Problems

E 3.12 Creep Of Thick Cylinder (Plane Strain)

A thick-walled cylinder loaded by internal pressure is analyzed using the creep analysis
procedure available in the MARC program. This example provides the user with guidelines for
specifying stress and strain tolerances.

Element (Ref. B10.1)

Element type 10, the axisymmetric quadrilateral, is used here.

Model

The geometry and mesh used are shown in Figure E 3.12-1. The cylinder has an outer to inner
radius ratio of 2 to 1. The mesh has 20 elements, 42 nodes and 84 degrees of freedom.

Geometry

This option is not required for this element.

Material Properties
The material data assumed for this example is: Young’s modulus (E) is 30.0 x 10 psi, Poisson’s
ratio (v) is 0.3, and yield stress (g,) is 20,000 psi.

Loading

A uniform internal pressure of 1000 psi is applied to the inner wall of the cylinder using the
DIST LOAD option. The inclusion of the SCALE parameter card causes this load to be
automatically scaled upward to 9081.3 psi which is the pressure load which will cause the
highest stress element (number 1 here) to be at a J, stress of 20,000 psi.

Boundary Conditions

All nodes are constrained in the axial direction such that only radial motion is allowed.

Creep

Creep analysis is flagged by use of CREEP and the conditions are set using the CREEP model
definition block. The creep law used here is:

€ = Ao" , in/in-hr.
where:

Ais 1.075 x 10726
and:

n = 5.5 (where the stress is given in psi).
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The exact, steady-state solution for this problem is:

=20 &

P b 2/n
o =Fl @ -
3 B 2— 12 2/n }
Gpp = d[(n 1)(1_) +1
where:

p is the internal pressure
a is the inside radius
b is the outside radius

and:

b 2/n
U

d= (
The creep law has been introduced directly on data cards through the CREEP option in the
following manner. (See Volume C). The first four fields of the second line of the CREEP option
define the type of functional relationship: in this case only stress dependence of the creep strain
rate is introduced as a power law; all four fields are left blank except the second where a minus
1 indicates a power law is to be used. The valuc of A is also on this line in columns 21 through
35. Lines 3, 5 and 6 of the option are omitted in this case, as the corresponding independent
variables are not being included in the law. Columns 1 through 15 of line 4 give the value of n,
the exponent in the creep law, as a floating-point number.

Creep Control Tolerances — AUTO CREEP Option

The program runs a creep solution (under constant load conditions) via the AUTO CREEP
history definition. This option chooses time steps automatically, based on a set of tolerances
and controls provided by the user. These are as follows:

1. Stress Change Tolerance (AUTO CREEP Model Definition Set, Line 3, Columns 11-
20). This tolerance controls the allowable stress change per time step during the creep
solution, as a fraction of the total stress at a point. The stress changes during the
transient creep, and the creep strain rate is usually very strongly dependent on stress
(in this case, the dependence is 6°7); this tolerance governs the accuracy of the
transient creep response. Due to accurate track of the transient, a tight tolerance (1%
or 2% stress change per time step) should be specified. If only the steady-state solution
is sought, a relatively loose tolerance (10-20%) may be assigned.
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. Creep Strain Increment Per Elastic Strain (AUTO CREEP Model Definition Set, Line

3, Columns 1-10).

The MARC program explicitly integrates the creep rate equation, and hence requires
a stability limit. This tolerance provides that stability limit. In almost all cases, the
default of 50% represents that limit, and the user need not provide any entry for this
value. Figure E 3.12-6 illustrates the problems that can occur if the stability limit is
violated.

. Maximum Number of Recycles for Satisfaction of Tolerances (AUTO CREEP Model

Definition Set, Line 2, Columns 36-40).

The program chooses its own time step during AUTO CREEP based on the algorithm
described below. In some cases, the program may recycle in order to choose a time
step to satisfy tolerances, but it is rare for the recycling to occur more than once per
step. If excessive recycling occurs, it may be because of physical problems (such as
creep buckling), bad coding of user subroutine CRPLAW, or excessive residual load
correction. Excessive residual load correction occurs when the creep solution begins
from a state which is not in equilibrium. This entry prevents wasted machine time by
limiting the number of cycles to a prescribed value. The default of 5 cycles is
reasonable in most normal cases.

. Low Stress Cut-Off (AUTO CREEP Model Definition Set, Line 3, Columns 21-30.)

This control avoids excessive iteration and small time steps caused by tolerance
checks on elements with small round-off stress states. A simple example is a beam
column in pure bending — the stress on the neutral axis will be a very small number;
it would make no sense to base time step choice on satisfying tolerances at such points.
The default here of 5% is satisfactory for most cases — the MARC program does not
check those points where the stress is less than 5% of the highest stress in the structure.

. Choice of Element For Tolerance Checking (AUTO CREEP Model Definition Set, Line

7, Columns 31-35.)

The default option for creep tolerance checking is having all integration points in all
elements checked. To save time, tolerances are checked in one selected element — this
field is then used to select that element. Usually, the most highly stressed element is
chosen.

All stress and strain measures used in tolerance checks are second invariants of the deviatoric
state (i.e., equivalent von Mises uniaxial values).

All tolerances and controls may be reset upon restart.

When a tolerance or control may be entered in two places (i.e., on the CREEP or CONTROL
Model Definition set) the values or defaults provided by the last of these options in the input
deck are used.

Rev. K.5
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Auto Creep

This history definition set chooses time steps according to an automatic scheme based on the
tolerances described above. AUTO CREEP is designed to take advantage of diffusive
characteristics of most creep solutions — rapid initial gradients which settle down with time.
The algorithm is as follows:

* For a given time step At, a solution is obtained.

* The largest value of stress change per stress

A_G‘ and creep strain change per elastic
c

strain, (—| are found. These are compared to the tolerance values set by the user, T
Ee
and T,.
. . Ac Ae€
* Then the value p is calculated as the bigger of |——| /T, or |Z= |/ T, .
(o) g€

a. Clearly if p > 1, the solution is violating one of the user’s tolerances in some part
of the structure. In this case, the program resets the time step as:

Atnew = Atold*'8/ p

i.e., as 80% of the time step which would just allow satisfaction of the tolerances.
The time increment is then repeated. Such repetition continues until tolerances are
successfully satisfied, or until the maximum recycle control is exceeded — in the
latter case the run is ended. Clearly, the first repeat should satisfy tolerances — if it
does not, the cause could be:

excessive residual load correction
creep buckling — creep collapse
bad coding in subroutine CRPLAW or VSWELL

and appropriate action should be taken before the solution is restarted.

b. If p<I the solution is satisfactory in the sense of the user supplied tolerances. In
this case, the solution is stepped forward to t+Qt and the next time step begun. The

time step used in the next increment is chosen as:

Atnew = Ato]d if0.8 < P <10
Aty = 1.25 * Aty if 0.65<p < 0.8
Aty = 1.5 * Atyyif p = 0.65

The diffusive nature of the creep solution is utilized to generate a series of monotonically
increasing time steps.
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Results

Four solutions were found and compared to the steady-state solution as shown in Table E 3.12-1
using the notation below.

1. Column A — 3% stress tolerance, 30% strain tolerance, with residual load correction.
2. Column B - 10% stress tolerance, 50% strain tolerance, with residual load correction.

3. Column C - 10% stress tolerance, 100% strain tolerance, with residual load correction.

These solutions are compared (at 20 hours) in Table E 3.12-1. Graphical comparisons are
drawn in Figure E 3.12-2 through Figure E 3.12-6.

All solutions are satisfactory in the sense that monotonic convergence, with monotonic
increase in time-step size, is achieved except for the strain-controlled part of the solution with
100% strain tolerance. Here the stresses oscillate. In fact, it may be shown that the strain change
repeats a numerical stability criterion, and that 50% is the stability limit. The residual load
correction controls the oscillation in the sense that the solution does not diverge completely.
The residual load correction has little effect until a large number of steady-state increments
(i.e., strain-controlled increments) have been performed. At this point, it is essential for an
accurate solution. The 10% stress control allows a slightly more rapid convergence to
steady-state. This control is quite satisfactory, considering that it reduces the number of
increments needed by 42%.

Summary of Options Used

Listed below are the options used in example e3x12.dat:

Parameter Options

CREEP
ELEMENT
END
SCALE
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
CREEP

DIST LOADS
END OPTION
FIXED DISP
ISOTROPIC
PRINT CHOICE

Load Incrementation Options

AUTO CREEP
CONTINUE
DIST LOADS

Listed below is the user subroutine used in u3x12.f:
CRPLAW
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Table E 3.12-1 Creep of Thick Cylinder — Comparison of Results at 20 Hours

Stress | Location Ste?;cg:ate (815\) t ( 488) ( ::2)
i(?:;d_gzs) -1372.2 -1369.2 -1375.4 -1332.8
o, ?;'Sf’ﬁs) 2725.1 2725.1 2725.6 2725.3
E’r‘itffg;’ 5) 5641.0 5635.9 5636.7 5638.2
inside -8717.0 -8712.4 -8714.0 -8710.9
6, |middle -3709.2 -3707.1 -3707.4 -3707.3
outside -145.24 -144.49 -144.56 -144.58
inside 5972.6 5974.0 5948.3 6072.8
Ogo | middle 9159.3 9158.0 9158.9 9156.4
outside 11427.0 11424.0 11425.0 11426.0
inside 12741.0 12719.0 12698.0 12803.0
5 middle 11144.0 11141.0 11143.0 11140.0
outside 10022.0 10019.0 10019.0 10020.0
+Number of steps required to reach 20 hours.
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R
(Radius)§
41 42 6
™ Element 20 E=30x10"psi
v=.3
-C
&€ = Ac"hr
A=1.075x1028
n=55
% [Node 1 ) Element 1
T 2
p = 9081.3 psi (Scaled Value)
- .05
)

(Symmetry Axis)

Figure E 3.12-1 Thick Cylinder Geometry and Mesh

Exact Steady State vs. Finite Element
15 - (20 Linear Elements)
Stress
ksi

10

- Exact t = oo
= Finite Element with Residual
Load Correction at 2.5 Hours

o Finite Element with Residual
Load Correction at 20.3 Hours
o Tolerance 3%
€ Tolerance 30%

Figure E 3.12-2 Creep of Thick Cylinder, Long Time Resulits
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Stregg
ksi' 5

g__%'—)‘_nx_xn_x_o:—-uo—u—x g - Exact Steady

State Solution
10 Fee, Centroid of Outsid
© x Centroid of Outside
5 20X X DX X XX e KO XX G Element ( R = 1976) with
Lc%_atil Correction
> o Tolerance 3%
0 éz’bnoao X_X 0% %O XeolX oo XOXX Opp € Tolerance 30%
sk © Same But
o Tolerance 3%
10 ORI N Nl Yo X O X el o X QX =X Gy € Tolerance 30%
1 1 1 1 1
0 0.5 1.0 1.5 2.0 2.5 Time, Hrs.

Figure E 3.12-3 Creep of Thick Cylinder — Numerical Comparisons

Stregg c
ki X0 x & O X600
10 = °% -0 x &SRO —x"x G

- o‘

State Solution

8 _:P’g P* — Exact Steady
el

Oz * Centroid of Outside
4 <0 X X Element (R = 1075)
g xox %O o with Load Correction
x

) o Tolerance 3%
ZE: € Tolerance 30%
0 X O X X O X e e X O X=X Gy © Same But

o Tolerance 10%

2L ¢ Tolerance 50%
- 1 1 1 | |
0

0.5 1.0 1.5 2.0 25
Time, Hrs.

Figure E 3.12-4 Creep of Thick Cylinder — Numerical Comparisons
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Stress Continuation of Results for Outside Element
ksi

12—
0 X~ X O X OOl 2 OH= B2t Sttt Dot X =4 DA O X O 2x. T

10 b0 23 Cr= AT X GO H o K D A Tt O Ot MmO Rk G
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Figure E 3.12-5 Creep of Thick Cylinder — Numerical Comparisons

Oscillation of Equivalent Stress in Inside Element in
Strain Controlled Regime with 100% Strain Tolerance
Stress (2 Times the Stability Limit).

ksi
P AN AR

10 -

0 5 10 15 20
Time, Hrs.

Figure E 3.12-6 Creep Ring
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E 3.13 Beam Under Axial Thermal Gradient And Radiation-induced
Swelling

A hollow circular-section beam is analyzed under axial and transverse temperature gradients.
It is also subject to a variable neutron flux field resulting in irradiation-induced creep swelling.

Element (Ref. B25.1)

In this problem, thermal gradients will result in an axial strain that varies along the length of
the beam. Element type 14 only allows constant axial strain so it is not suitable here; element
25 will be used insead. This is element type 14 with an additional local degree of freedom
which allows nonuniform axial strain. Element type 25 is a closed-section straight beam
element with no warping of the section, but including twist. The element has seven degrees of
freedom per node; three displacements and three rotations in the global coordinate system and
axial strain.

Model

The beam is constrained axially at its base; rotations are allowed. Reaction forces at the base
and three collars are computed. Each reaction force is modeled by the use of a linear spring,
one end of which is attached to the node at the base or collar point; the remaining end is
attached to a fixed node. The springs are dimensionless and completely linear. There are 21
elements and 20 nodes for a total of 182 degrees of freedom (see Figure E 3.13-1).
Geometry

The BEAM SECT may be used to specify a cross section other than the default (circular section)
used here.

Material Properties

The material is elastic with a Young’s modulus of 26.4 x 10° psi and Poisson’s ratio of 0.3. The
initial stress-free temperature is 400°F and the coefficient of thermal expansion is 0.96 x 107 in/in/°F.
Loading
Thermal gradients and neutron flux are the only loading imposed; no mechanical loads are
applied.
Boundary Conditions
The beam end is fixed axially (u = 0). In order to model reaction forces, the beam end and collar
points are “fixed” by linear springs that are stiff enough to effectively zero the displacements.
User Subroutines

Long-term creep and swelling results are desired. Subroutine VSWELL is used. The creep law
is written for 304 and 306 stainless steel. The swelling is written in accordance with ORNL
recommendations.
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The creep law may be expressed as:
€° = AEeG (1 —exp (-E¢t/B)) + CE¢ ¢ Gt
Differentiating:

£ = AE¢G e E¢/B eexp (-E¢ ¢ t/B) + CE¢ » 5¢

where:
€° is the equivalent creep strain
t  is the time (sec.)
¢ is the neutron density
E is the mean neutron energy in MeV
o is the equivalent J, stress
T  is the temperature
A =17x1072
B =20x10%
C =75x10%

The radiation-induced swelling strain model may be expressed as:

\Y% 1+ -
AVE _ pors Rin[ Lo (@ Co00) ]
v o I +expt

where R, 1, o are functions of temperature. Differentiating:

exp (o (T-9t)) }

100g,; = R¢‘R¢[ (1+exp (a(T—0t)))

R = expB
B = —88.5499 +0.531072T — 1.24156 x 107372

+1.37215 % 107°T3 - 6.14 x 107102

T = exp [— 16.7382 + 0.130532T — 3.81081 x 1074T*

+5.51079 x 1077T3 - 3.2649 x 10710T*

= —1.1167 + 6.88889 x 107>T

E3.13 -2
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To properly model the complex temperature and flux distributions for use by these subroutines,
a subroutine CREDE has been written with two state variables. The first state variable is
temperature; the second is the neutron flux density. Two linear gradients, in the coordinate
directions on the section, are assumed for both state variables. The four values of each variable
at each node correspond to the values at the first, fifth, eighth and thirteenth points on the
section. The remaining values are determined by bilinear interpolation.

Special Considerations

The RESTART option is used, as the prediction of the number of increments that will be
analyzed is difficult. The option also permits the input and output to be checked as often as each
increment. When the problem is restarted, the parameters and loads may be changed. To modify
the time increments specified in the AUTO CREEP option, the REAUTO Model Definition option
would be necessary. The CONTROL option may be used to specify the number of increments in
this analysis. To determine the creep increment input in the first field, second line of the AUTO
CREEP option, the procedure outlined in Volume A was used. Briefly a “worst” case with
highest stress and temperature (extracted from the elastic load case) is studied. The total strain
rate is set to zero as in a relaxation test; then the initial creep strain rate and the tolerance for
stress change (AUTO CREEP option, second field of the third line), are used to determine a
conservative upper bound on the initial creep time step.

The program used three Gaussian integration points per element rather than just the centroid
for calculation and storage of element stresses.

The nonuniform temperature and flux information was input in the THERMAL LOADS option. A
well-behaved temperature and flux variation could be generated within the CREDE subroutine,
in which case the THERMAL LOAD series would consist of just the first two lines.

Results

After 4500 hours of creeping the plot of stress versus time changes from straightforward stress
relaxation to an oscillation. This change is due to an increase in swelling contribution. Stress
relaxation has been plotted in Figure E 3.13-2.

Summary of Options Used

Listed below are the options used in example e3x13.dat:

Parameter Options

CREEP
ELEMENT
END

SIZING
STATE VARS
THERMAL
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
CREEP

END OPTION
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FIXED DISP
GEOMETRY
ISOTROPIC
PRINT CHOICE
RESTART
SPRINGS
THERMAL LOADS

Load Incrementation Options

AUTO CREEP
CONTINUE

Listed below are the user subroutines found in u3x13.f:

CREDE
VSWELL
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E 3.14 Creep Bending Of Prismatic Beam With ORNL Constitutive
Equation And Load Reversal

A cantilever beam of 100-in. length, with a solid cross section of 4-in. height and 2-in. width,
is subjected to a forced rotation of 1/20 radians at the free end at time zero (see Figure E 3.14-

1).
Due to creep, stress relaxation occurs. Subsequently, the prescribed rotation is reversed to -1/
20 radians, and again stress relaxation is allowed to occur. The creep law is of the strain
hardening type, and for load reversals follows the ORNL recommendation. Automatic time
stepping is used in both creep periods.

Discussion of Constitutive Equation

The creep equation used in this example has the form:
£ = 107%f (% &’

where f(g°) is specified through slope-breakpoint data. The MARC slope-breakpoint data
assumes that at the first breakpoint the function f is equal to zero. However, for our constitutive
equation it is required that f(0)=1. The first breakpoint is defined (in reality this can not occur)
at an equivalent creep strain of -1.0, and a slope of 1.0 is entered. The function f will be 1.0 at
the start of the analysis. The specified curve for positive equivalent creep strain is shown in
Figure E 3.14-2.

If a load reversal occurs, the ORNL rules take effect. In a uniaxial situation, these rules assume
the existence of two values of the creep strain: €€ " and €° . For tension, €° " is used in the
calculation of f(£°), and during tensile creep €° " is updated. During compression, €° is used

in the calculation of f(€°), and g¢” is updated. After the first load reversal, € is still zero

and the material starts creeping as if no previous creep-strain hardening occurred. For the
ORNL material relaxation of the stresses after load reversal, it starts more quickly than for a
standard isotropically hardening material.

Element (Ref. B16.1)

The two-dimensional cubic beam element, MARC type 16, is used in this analysis.

Model

Four elements are used in this example. The moment is constant throughout the beam;
therefore, all elements will undergo the same deformation. The geometry of the mesh is shown
in Figure E 3.14-1.

Geometry
Beam height and width are specified in the first and second fields of the GEOMETRY option.
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Material Properties

Linear elastic material behavior with Young’s modulus (E) of 1 x 107 psi and Poisson’s ratio
(n) of 0.3 is specified on the ISOTROPIC option. Since no plasticity is assumed to occur, no
yield stress is specified. The creep properties are specified on the CREEP Model Definition
block. The CREEP properties were discussed before.

Boundary Conditions

Element 16 has as degrees of freedom: u, v, 9 and 9‘_’

v Is In this problem, the beam-axis

v . .
P equal to the rotation. Therefore, at node 1, both

displacements and the rotation are suppressed, whereas at node 5 the rotation is prescribed as
a non-zero value.

corresponds with the x-axis,

SHELL SECT

The SHELL SECT option is used to specify seven layers for integration through the thickness.
Since the material does not have tangent-modulus nonlinearities, the elastic properties will be
integrated exactly. The creep strain increment will be integrated with sufficient accuracy with
the seven points specified.

PRINT CHOICE

In this option, output is requested at only one integration point (2) and one element (1), and
nodal quantities are only printed at node 5. At the one integration point, all layers are printed,
however.

Post File

A POST file is written containing only the displacements and the reaction forces. This may be
used by MENTAT.

Creep Analysis Procedure

The AUTO CREEP option is used to analyze the first relaxation period of 200 hours. An initial
time step of 100 hours is specified. The program will scale this down in order to obtain a
starting value such that the tolerances are satisfied. All control parameters are set to their default
values. The testing for the satisfaction of CREEP tolerances will be done for element type 1
only. A zero rotation increment is specified for node 5 with the DISP CHANGE option. This is
done in order to ensure constant rotation during the creep period. A maximum number of
increments in each AUTO CREEP block is 50; the total number of increments must be less than
80, as specified in the CONTROL option.

At the end of the first creep period, a rotation increment of negative-2 times the originally
specified rotation is prescribed. his effectively reverses the loading. Then another creep period
is started similar to the previous one.
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Results

In increment zero, the elastic solution is obtained. The stress and strain in the extreme fiber of
the beam are equal to 10* and 10~ psi, respectively. With the specified creep law, this yields an
initial creep strain rate of 10~ hours™'. If the stress change is to be less than 10% (the default
on the AUTO CREEP card), the creep strain increment must be less than 10~. The initial time
step must be less than 1. The program selects an initial time step of 0.8. Due to the stress
relaxation, the creep strain rate rapidly decreases, and the program rapidly increases the time
step. In 15 steps, the creep period of 200 hours is traversed. The last step prior to load reversal
is equal to 42.7 hours. The stresses through the section before and after relaxation are shown
in Figure E 3.14-3. The creep strain in the extreme fibers has reached a value of 6.2 x 10, and
the creep strain rate has been reduced by a factor of more than 2 due to creep strain hardening.

Subsequently the load is reversed. The stresses in the extreme fibers now increase to a value of
1.622 x 10%. Since the load is reversed, the ORNL creep equation predicts a creep rate as if no
hardening had occurred: € = 11.23 x 10~ hours!. In order to satisfy the creep tolerances, the
initial time step must now be less than 0.1445 hours. The program selects a time step of 0.1 157
hours. Again, the time step rapidly increases during the creep period. Now, 20 steps are needed
to cover the 200-hour period, with the time step in the last increment equal to 45 hours. The
stress profiles at the beginning and the end of the increment are compared in Figure E 3.14-4.

Also of interest is the variation of the bending moment in the beam during the two creep
periods. For that purpose a POST tape is written. Only displacement and reaction forces are
written on this tape. The MARC PLOT program is then used to plot the bending moment (the
reaction force at node 1, degree of freedom 4) against time. The result is shown in
Figure E 3.14-5. The input for the MARC PLOT can be found at the end of the input for the
MARC STRESS program.

Summary of Options Used

Listed below are the options used in example e3x14a.dat:

Parameter Options

CREEP

END

NEW

SHELL SECT
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
CREEP

END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
POST
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Load Incrementation Options

AUTO CREEP
CONTINUE
DISP CHANGE
PRINT CHOICE

Listed below are the options used in example e3x 14b.dat:

Parameter Options

END
TITLE
USER
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E 3.15 Creep Of A Square Plate With A Central Hole Using Creep
Extrapolation

A square plate of 10 x 10 in. with a central hole of 1-in. radius is loaded in tension.
A state of plane stress is assumed in the plate, and the thickness of the plate is taken as 1 in.

A tensile load of 10,000 psi is applied. The plate is allowed to creep for a period of 10,000
hours. Followed by a single creep increment of 100 hours is taken, during which the strains and
displacements are accumulated. Based on the accumulated strains and displacements, the
solution is then extrapolated to a total creep time of 20,000 hours.

Element (Ref. B26.1)

MARC element type 26, an 8-node quadrilateral plane stress element is used in this analysis.
Because of symmetry, only one-quarter of the plate is modeled. The mesh is shown in
Figure E 3.15-1.

Material Properties

The elastic properties of the material are a Young’s modulus (E) of 30.E6 psi and Poisson’s ratio

(v) of 0.3. The creep properties are characterized by the Power law equation: &° = 1024 o* The
elastic properties are entered through the ISOTROPIC option. The creep properties are entered
through the CREEP option. Note that stress and strain changes, as used for the AUTO CREEP
options, will only be monitored in element 8, where the maximum stress occurs. The CREEP
parameter card flags use of the creep option.

Boundary Condition

Symmetry conditions are imposed on the two edges intersecting the central hole.

Loading

A distributed load of 10,000 psi is applied to the upper edge of the plate. For element type 26,
the load type 8 is used to apply the load to the correct face of elements 13 and 14. Load type 8
is a pressure load: a negative value is entered to obtain a tensile load.

Optimization
Ten Cuthill-McKee iterations are allowed to reduce the bandwidth. The original bandwidth was
equal to 67. In the third iteration, a minimum of 26 is reached. The correspondence table is
written to file 1.

Post File Generation

The equivalent stress and creep strain are written on the POST file. Both total displacements
and reaction forces are written on the POST file.
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Analysis Control

All default controls are in effect. The CONTROL option is only used to increase the number of
increments to more than the default of 4.

PRINT CHOICE

The PRINT CHOICE option is used to select output for element 8 and for nodes 30 through 34
and 68 through 71, which are the nodes on the edge of the hole.

Automatic Creep Analysis

The AUTO CREEP option is used for the first creep period of 10,000 hours. A time step of 1,000
hours is specified as the starting value. If necessary, the program scales this value down to a
time step which satisfies the specified stress and strain control criteria.

Strain and Displacement Accumulation

After the AUTO CREEP period is completed, accumulation of total strains, creep strains and
displacements is started with use of the ACCUMULATE option. Because storage of the
accumulated values requires additional core allocation, the ACCUMULATE parameter must be
included.

User Controlled Creep Analysis

The CREEP INCREMENT option is used to specify a single creep increment of 100 hours. If the
CREEP INCREMENT option is invoked, the time step is not adjusted to satisfy the creep
tolerances.

Strain and Displacement Extrapolation

Based on the incremental results obtained during the CREEP INCREMENT, the total strains,
creep strains and displacements are extrapolated to estimate values at a total CREEP time of
20,000 hours. The EXTRAPOLATE option is used for this purpose. The extrapolation from a
single increment is rather trivial; a more meaningful use of the EXTRAPOLATE option can be
found in extrapolation of cyclic loading results.

Results

The results of increment O indicate that a maximum stress of 31,370 psi in the y-direction
occurs in element 8. This corresponds to a stress concentration factor of 3.137, which is slightly
higher than the factor of 3 occurring in an infinite plate. In increment 1, the user selected time
step of 1,000 hours yields a stress change which is almost five times higher than the maximum
allowed in the CONTROL option. The MARC program then picks a time step of 161.2 hours,
with which the tolerances are satisfied. The maximum stress change governs the time
incrementation up to increment 7, where at a total creep time of 3,685 hours the strain control
becomes effective. The time step rapidly stabilizes at a value of about 2,000 hours, until the end
of the AUTO CREEP period is reached in increment 12. A single time step of 100 hours is taken,
during which the displacements, total strains and creep strains are accumulated. The options
used for this are CREEP INCREMENT and ACCUMULATE. In increment 13, the accumulated
quantities are subsequently extrapolated to a time of 20,000 hours. The stress relaxation is
shown in Figure E 3.15-2. The creep strain history is shown in Figure E 3.15-3. One can
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observe the creep strain at node 30 appears to be zero. As the creep strain goes as the fourth
power of stress, we see that neighboring points can have substantially different amounts of
creep.

Although the ACCUMULATE and EXTRAPOLATE options are primarily useful for extrapolation
of cyclic loading results, they also offer some advantage in analysis of creep problems in which
steady state is approached. If a long steady state phase must be analyzed, the standard explicit
creep procedure still limits the maximum time step because of the existence of a stability limit.
This stability limit corresponds with the default value of the strain change control set in the
CONTROL option. This stability problem is absent in the EXTRAPOLATE options, however,
since the stresses are not affected by extrapolation. Substantial savings in computer run time
can be obtained. It should be noted, however, that extrapolation can lead to considerable errors
in strains and displacements, particularly if extrapolation is done from an increment in which
steady state creep had not yet been reached. Extreme care must be exercised when this option
is used.

Summary of Options Used

Listed below are the options used in example e3x15.dat:

Parameter Options

ACCUMULATE
CREEP
ELEMENT
END

SIZING

TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
CREEP

DIST LOADS
END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
POST

PRINT CHOICE

Load Incrementation Options

ACCUMULATE
AUTO CREEP
CONTINUE

CREEP INCREMENT
DIST LOADS
EXTRAPOLATE
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Listed below are the options used in example e3x15b.dat:

Parameter Options

CREEP
ELEMENT
END
SIZING
TITLE

Model Definition Options

CONNECTIVITY
CONTROL
COORDINATE
CREEP

DIST LOADS
END OPTION
FIXED DISP
GEOMETRY
ISOTROPIC
POST

PRINT CHOICE

Load Incrementation Options

E3.15 -4

AUTO LOAD
CONTINUE

CREEP INCREMENT
DIST LOADS
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E 3.16 Plastic Buckling Of An Externally Pressurized Hemispherical
Dome

In this problem, the MARC program analyzes structures in which both geometric and material
nonlinearities occur and cause collapse of the structure. The model used is a hemispherical
dome with a radius of 100 in. and a thickness of 2 in. which is clamped at the edge
(Figure E 3.16-1). The material is elastic-perfectly plastic, with a Young’s modulus of 21.8 x
106 Ib/sq.in, a Poisson’s ratio of 0.32 and a yield stress of 20,000 Ib/sq.in. No work-hardening
due to plastic straining occurs.

This geometrically nonlinear problem is solved incrementally with Newton-Raphson style
iteration. The analysis is continued until plastic collapse occurs. In the MARC program, such
collapse becomes apparent either due to failure to converge in the iteration process (MARC exit
3002) or due to the stiffness matrix turning nonpositive definite (MARC exit 2004).

It is assumed that the collapse is axisymmetric, such that the problem can be analyzed with an
axisymmetric finite element model. If it were likely that a nonsymmetric collapse mode would
occur, the problem would have to be analyzed with a full three-dimensional shell model (using
MARC element type 22, 72 or 75). During the course of the analysis, buckling modes are
extracted with the eigenvalue algorithm. The properties of the dome change strongly as
plasticity develops; thus, the results of the eigenvalue extraction vary substantially during the
analysis.

Element (Ref. B15.1)

Eight axisymmetric shell elements (MARC type 15) were used in this analysis. Element 15 is
an element with fully cubic interpolation functions, quadratic membrane strain variation and
linear curvature change variation along its length. This element yields rapid convergence and
behaves very well in geometrically nonlinear situations.

Geometry

The thickness of 2.0 in. is specified on the first data field (EGEOM1) of the GEOMETRY option.

Coordinate Generation

Element type 15 requires input of higher order coordinates. For a simple shape like a dome,
these coordinates are most easily generated automatically. The Model Definition option
UFXORD and the user subroutine of the same name are used for this purpose.

Material Properties

Since no work-hardening occurs, all properties (Young’s modulus, Poisson’s ratio, yield stress)
are specified in the ISOTROPIC option.
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Transformations

Transformations are applied to all nodes except node 1, such that for all nodes the transformed
degrees of the freedom are the same:

1 = Radial displacement

2 = Tangential displacement

3 = Rotation

4 = Meridional membrane strain

This transformation is not necessary, but facilitates visual inspection of displacement vectors
and buckling nodes.

Boundary Conditions

Symmetric conditions are specified for node 1, fully clamped conditions for node 9.

Loading
The DIST LOAD option is used to specify a distributed pressure load of 540 psi on all elements.

Control

Because the objective of the analysis is to calculate the collapse load, a large number of
recycles (6) is allowed. Default convergence controls are used.

Stress Storage

The SHELL SECT option is used to specify a 5-point integration through the thickness.

Geometric Nonlinearity

The LARGE DISP parameter card indicates that geometric nonlinear analysis will be performed.

Buckling

The BUCKLE parameter card is included to indicate that a maximum of three buckling modes
are to be extracted, with a minimum of one mode with a positive buckling load.

After increment O (the linear elastic increment) is carried out, the BUCKLE History Definition
option is used to extract the linear buckling mode. The BUCKLE option does not increment the
analysis (increment number or loads). After the execution of the BUCKLE option, the program
proceeds as usual.

Load Incrementation

The AUTO LOAD and PROPORTIONAL INCREMENT options are used to increase the pressure
with an increment of 10% of the applied pressure in increment O during four increments.
Subsequently, the same options are used to increase the pressure with an increment of 20% (2%
of the original load) for two increments. With the PROPORTIONAL INCREMENT option, the load
increment is then divided by 2, which brings the total pressure up to: 1.45 x 540 = 783 psi. A
buckling mode extraction is performed to estimate the collapse mode and collapse pressure.
Plots are made of deformation increment and the buckling mode. This last sequence is repeated
twice, with the total pressure at the end of increment 9 equal to 793.8 psi.
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Results

In increment O, the linear elastic solution is obtained. The maximum stress of 19,720 psi occurs
in element 8, integration point 3, layer 1, which is the point closest to the clamped edge. The
displacement increment is shown in Figure E 3.16-2. The linear elastic buckling analysis,
which is subsequently carried out, yields a collapse pressure of: 19.74 x 540 = 10,660 psi. The
buckling mode is shown in Figure E 3.16-3, the calculated pressure is very close to the
buckling pressure of a perfect sphere. For the perfect sphere, the buckling pressure (taken from
Timoshenko’s and Gere, Theory of Elastic Stability) is given by the equation:

P - 2 Et?
¢ R3(1-vY)

The data for this problem yields 10,628 psi from this equation. As the load is increased, the
plastic flow begins to occur near the clamped edge. At the end of increment 6, plasticity occurs
at all points in elements 7 and 8. The average membrane stress level is now only 2.7% under
the yield stress.

In increment 6, the plasticity spreads out into element 6. The maximum plastic strain is about
0.12% and occurs at the inside of element 8. The average membrane stress is 2.1% under the
yield stress.

The buckling analysis at this state yields a collapse pressure equal to the current pressure plus
158 times the pressure increment. This corresponds to a collapse pressure of 1,609 psi. The
buckling mode has the same shape as the displacement increment, as follows from comparison
of Figure E 3.16-4 and Figure E 3.16-5.

Increment 8 is applied. Plasticity spreads deeper into the model, and the average membrane
stress is 1.5% under the yield stress. The buckling analysis yields a collapse pressure of current
pressure plus 64 times the pressure increment, which is equal to 1,134 psi. Some differences
now occur between buckling mode and displacement increment, as shown in Figure E 3.16-6.

At increment 9, the pressure is 793 psi. If additional load is applied, the stiffness matrix
becomes nonpositive definite.

Discussion of Results

It is clear that in this problem the dominant mode of failure is plastic collapse. Throughout most
of the analysis, the geometric nonlinearities do not play a significant role. In fact, if the simple
failure criterion is used that collapse occurred when the membrane stress reaches yield, a
collapse pressure of

ot _
p. = ZT = 800 psi

is calculated, which is only 1% over the result obtained in the finite element analysis. It should
be noted that in this demonstration problem, the step size is decreased gradually when the
critical point is approached. In a practical situation, one does not know when this critical point
occurs. The procedure would then be to analyze the problem first without step refinement and
write a RESTART file. The analysis will still come to a point where no convergence occurs or
where the matrix turns nonpositive definite. The analysis is then RESTARTED with a smaller
load step one or two increments before the critical point, and a solution with improved accuracy
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is obtained. This procedure can be refined as often as necessary to get the required accuracy. In
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